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What do we mean by quantum communication 
beyond QKD? 

• QKD: Distribution of unconditionally secure key among legitimate users. 
Usually one user (Alice) prepares and distributed it. Encryption is usually hybrid 
(classical  encryption with quantum key) technology. 

• Quantum Cryptography Beyond QKD 
– Secure direct communication=>DSQC and QSDC (Maximally efficient 

protocols for direct secure quantum communication, A. Banerjee and A. 
Pathak, Phys. Lett A 376 (2012) 2944-2950; Beyond the Goldenberg-Vaidman 
protocol: Secure and efficient quantum communication using arbitrary, 
orthogonal, multi-particle quantum states, C. Shukla, A. Pathak and R. 
Srikanth, Int. J. Quant. Info., 10 (2012) 1241009.) 

– Quantum dialogue and solution of socialist millionaire problem (On the 
group-theoretic structure of a class of quantum dialogue protocols, C. 
Shukla, V. Kothari, A. Banerjee and A. Pathak, Phys. Lett. A, 377 (2013) 518.) 

– Quantum cryptographic switch (The quantum cryptographic switch, N. 
Srinatha, S. Omkar, R. Srikanth, S. Banerjee and A. Pathak, Quant. Infor. 
Process. 13 (2014) 59-70.) 

– Hierarchical quantum communication (Hierarchical quantum 
communication, C. Shukla and A. Pathak, Phys. Lett. A 377 (2013) 1337-
1344.) 

– Quantum key agreement (Orthogonal-state-based protocols of quantum key 
agreement, C. Shukla, N. Alam and A. Pathak, arxiv: 1310.1435 (quant-ph). 
 
 



We do IT with both bit and qubit 

 

Here I will talk mostly on quantum communication excluding 
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How are different aspects of quantum cryptography 
connected? 

Secure Quantum 
Communication 

QKA QSDC DSQC 

QKD 

Don’t send meaningful information 
Semi-honest Alice & Bob 

Quantum 
Dialogue 

Related problems: Socialist Millionaire Problem, Quantum Cryptographic 
Switch  

HQSS=HQIS+QKD QSS=QKA+QKD 



Practical situations that require protocols 
beyond conventional QKD: Situation1  

 
          Alice: President of a country,        Diana: Defence minister of that country.  
 Bob: Defence secretary.                  Charlie: The chief of the armed forces.  
        If the president wishes to permit the use of a nuclear weapon at a suitable 

time then she distributes an information (say, a key required to unlock the 
nuclear weapon) among the defence minister, the defence secretary and the 
chief of the armed forces in such a way that the minister can unlock the 
weapon if either the defence secretary or the chief of the armed forces 
agrees and cooperates with him. However, if the chief of the armed forces 
or the defence secretary wants to unlock the weapon they would require the 
cooperation of each other and that of the defence minister, too.  

 The defence minister is more powerful than the chief of the armed forces 
and the defence secretary, but even she is not powerful enough to unlock the 
weapon alone. 

          Observation: There exists a hierarchy  

What do we need: Hierarchical Quantum Secret Sharing (HQSS) 



Practical situations that require protocols 
beyond conventional QKD: Situation 2-3  

 Banking requires hierarchy: HQSS is required in 
banking sector, where a bank manager and/or cashier 
is usually more powerful than the other users (office 
assistants and secretaries). However, even the bank 
manager alone is not powerful enough to perform all 
the financial operations related to his bank. For 
example, the password required to unlock an ATM is 
always split into two or more pieces and the manager 
alone cannot unlock it.  

 Situation3: Hierarchical secret sharing is also essential 
for the smooth operation of the departmental stores. 

 



quantum cryptographic switch 
Practical situation 4 
 The director of an organization wishes to keep control over the 

time and amount of information to be disclosed to an employee 
of the company.  

       Consider that Charlie is VC/Rector of a university, Alice is register 
who keeps the records and Bob is an employ who needs a file, 
but Alice can send a file to Bob if and only if Charlie allows him 
to do so.  Further, Charlie wants to control the amount of 
information Bob can read from the file sent by Alice. 

 Note: The custodian of the files (Alice) must not be worse than 
semi-honest, as she could otherwise create her own 
classical/quantum channel and communicate directly with Bob. 
But there is always a potential chance that Charlie can detect 
such communication.  

  



 
 The owner of a company (Charlie) has asked 

his semi-honest assistant (Alice) to send 
details of all his shares to a stock exchange 
broker Bob, to sell it in the stock market. But 
Charlie wishes to keep an eye on stock 
fluctuations and to permit Bob to sell his 
shares only at some suitable time. 

Situation 6: Socialist Millionaire problem. 

Practical situation 5 



Security models: semi-honest models 
vs. malicious models 

• Security models in the context of secure multiparty 
communication:   

1. Semi-honest model  
2. Malicious model. 

• In a semi-honest model, a protocol is considered secure against a 
collusion of participants (Alice and Bob in our case) if by 
accumulating their data, these participants cannot gain more 
information than what they can from the input and output of the 
protocol alone. A semi-honest party strictly follows the protocol. 

• In a malicious model, participants can deviate from the orignal 
protocol. 

• The protocols described in this talk and the similar protocols are 
not secure under a malicious model. 



Ideal cryptographic switch 
(Quant. Infor. Process. 13 (2014) 59-70) 

In the ideal situation, our protocol works as follows: 
1. After receiving Alice’s request, Charlie prepares n Bell states 

(not all the same) and sends the first qubits of all the Bell states 
to Alice and the second qubits to Bob. Charlie does not disclose 
which Bell state, he has prepared. 

2. After receiving the qubits from Charlie, Alice understands that 
she has been permitted to send the information to Bob. 

3. Alice uses dense coding to encode two bits of classical 
information on each qubit and transmits her qubits to Bob. 

4. When Charlie plans to allow Bob to know the secret 
information communicated to him, he discloses the Bell state he 
had prepared. 

5. Since the initial Bell state is known, by measuring his qubits in 
the Bell basis, Bob obtains the information encoded by Alice. 

 
 
Note:       Bob can perform Step 5 (i.e., measurement in the Bell basis) before 

Step 4 but he will not obtain any meaningful information without the 
knowledge of the initial state. A 

Motivated by: Adhikari, S., Chakrabarty, I.,Agrawal, P.: Probabilistic secret sharing through noisy quantum 
channels, arXiv:1012.5570v2 



Restrictions imposed on the ideal quantum 
cryptographic switch 

• Channel is one way: Bell-state measurement can reveal the state 
prepared by Charlie if both the qubits are in the possession of Alice or 
Bob. By the assumption that the channel between Alice and Bob is 
one-way, Bob cannot send his qubits to Alice for a Bell-state 
measurement. 

 
• Alice is semi honest: Alice does not send her qubits to Bob as she is 

assumed to be a semi-honest party, who strictly follows the protocol. 
Her semi-honesty is motivated by the fact that, while she may wish to 
potentially cheat Charlie, she wants her communication to Bob to be 
secure both in the sense of being protected from the rest of the 
world (in the usual QKD sense) as well as being undetected by 
Charlie. 

 
• Alice may protect her information from outside world by inserting 

decoy qubits. 
 
 



Notion of quantum cryptographic switch 
• Bob measures the two qubits in his possession to obtain the state that 

corresponds to Alice’s encoding. 
• Bob can decode the full information only if Charlie shares the full classical 

key information c that would make the initial entangled state pure.  
 

 
• Generally, Bob recovers Alice’s transmitted bits depending on the key 

information obtained from Charlie. Thus Charlie acts as a cryptographic 
switch who can determine the level of information Alice sends 

      to Bob after the full transmission of her qubit. 
 
 

• Example: a continuous-valued key corresponds to an arbitrary probability 
distribution over the Bell states. For example, Charlie may choose to 
reveal that the parity-0 Bell states are twice more like than parity-1 states 
and that Bell states of equal parity are equally likely. This corresponds to a 
probability distribution,        , i.e., an entropy of about 1.92 bits,  

 implying that Charlie reveals c = 0.08 bits. 
 

 

Note: In absence of full information the pure state prepared by Charlie 
would appear as mixed state to Alice and Bob.  
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Note: We can consider a family of protocols in which the key information c varies 
continuously as 0 ≤ c ≤ cmax = 2. Our protocol is characterized by cmax = 2. 



Information recovered by Bob, 
quantified by the Holevo 

quantity χ, as a function of the 
key information c 

communicated by Charlie, in 
the noiseless case 

 
 

Can we remove the 
restrictions on the 
channel? 

Yes, Charlie has to change her 
strategy and apply a random 
permutation on the qubits to be 
sent to Bob.  
Since the sequence with Alice 
and Bob are different, even if 
they cooperate, they will not be 
able to find out the Bell states 
prepared by Charlie as they 
don’t know which particle of 
Bob is entangled with which 
particle of Alice.  

PoP (Particle order permutation) is an excellent technique as it allows us to 
convert almost all conjugate coding-based quantum cryptographic protocols 

into corresponding orthogonal state based protocol.  



Quantum Dialogue: Ba An protocol 
1. Bob prepares large number of copies of a Bell state      . He keeps the 

first photon of each qubit with himself as home photon and encodes her secret 
message 00; 01; 10 and 11 by applying unitary operations U0,U1,U2 and U3 
respectively on the second qubit. Without loss of generality we may assume that 
U0 = I; U1 = X; U2 = iY and U3 = Z. 

2. Bob then sends the second qubit (travel qubit) to Alice and confirms that Alice has 
received a qubit. 

3.  Alice encodes her secret message by using the same set of encoding operations as 
was used by Bob and sends back the travel qubit to Bob. After receiving the 
encoded travel qubit Bob measures it in Bell Basis. 

4. Alice announces whether it was a run in message mode (MM) or in control mode 
(CM). In a MM run, Bob decodes Alice's bits and announces his Bell basis 
measurement result. Alice uses that result to decode Bob's bits. In a CM run, Alice 
reveals her encoding value to Bob to check the security of their dialogue. 

2
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Information is spitted in a clever way.  
The protocol is not secured under intercept-resend attack.  

Unitary operators should form a group under multiplication  



Sufficiency condition for quantum dialogue 

• If we have a mutually orthogonal set of n-
qubit states                     and a set of m-qubit  
unitary operators  
 

    forms a group under multiplication then it 
would be sufficient to construct a quantum 
dialogue protocol of Ba An type using this set 
of quantum states and this group of unitary 
operators. 
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Rearrangement of order of the particles and insertion of decoy photons make 

the protocol (unconditionaly) secure.  



Structure of the m-qubit unitary 
operators.  

• We are restricting ourselves in discrete variable 
communications. 

• Application of Hadamard, phase gate etc. will 
make the output non-orthogonal to input and 
consequently the states will not remain 
indistinguishable. Therefore,  

  
Therefore,  



How to form groups of unitary operators? 
Consider Pauli group with a different multiplication rule where 

global phase is ignored 
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Example: Following are order 32 subgroups of G3 



Are these groups useful for QD? 
Quantum State Dense coding for QD can be done using 

group of unitary operations 

Bell states G1 

4 qubit Cluster state, Ω state G2 

GHZ state 
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Quantum dialogue protocols can be implemented in several ways 



Socialist Millionaire problem: Application of dense 
coding achieved by groups of unitary operators  

• Charlie is a semi-honest third party who creates entangled 
states of the last table, keeps home photons and sends the 
travel photons to Bob. Bob encodes his asset value and sends 
it to Alice. Alice encodes her asset value and sends it to 
Charlie. Charie measures the state in appropriate basis. If her 
outcome is same as the initial state then Alice and Bob has 
equal assets otherwise not. No one knows whose asset is 
more and what is the exact amount of asset. 

We have obtained several solutions of this problem under a 
semi-honest model as Charlie needs to be semi-honest. 

• Another form: Two countries wish to destroy equal number of 
bombs but no one wants to tell first how many they wish to 
destroy and say united nation works as semi-honest Charlie. 



Step 1: Alice prepares            where                              . She uses first qubits of each 
Bell state to form an ordered sequences                                        . Similarly, she 
forms an ordered sequence                              with all the second qubits. Here          
 denote the first and second particles of ith copy of the Bell state        , for 
1 ≤ i ≤ n. She also prepares a random sequence                       ,                                
where        denotes the ith bit of sequence       and       is randomly chosen from {0, 
1}.        may be considered as Alice’s key. 
Step 2: Alice prepares a sequence of n/2 Bell states          as decoy qubits and 
concatenates the sequence with qA to form an extended sequence q′A . She 
applies a permutation operator        on q′A to create a new sequence         q′A = q′′A 
and sends that to Bob. 
Step 3: After receiving the authentic acknowledgment of the receipt of the entire 
sequence q′′A from Bob, Alice announces the coordinates of the qubits         sent 
by her. Using the information Bob rearranges the qubits and performs Bell 
measurements on the decoy qubits and computes the error rate. Ideally in 
absence of Eve all the decoy Bell states are to be found in       . If the error rate is 
found to be within the tolerable limit, they continue to the next step, otherwise 
they discard the protocol and go back to Step 1. 

A PP-type 2-party orthogonal-state-based 
protocol of QKA 
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Step 4: Bob drops the decoy qubits to obtain qA. Now he prepares a new random 
sequence                                                 where       denote the ith bit of sequence       , 
for 1 ≤ i ≤ n and       is randomly chosen from {0, 1}.       may be considered as Bob’s 
key. He applies a unitary operation on each qubit of sequence qA to encode        .  
The encoding scheme is as follows: to encode   KB

i=0 and KB
i=1 he applies I and X 

respectively on     . This forms a new sequence qB. After encoding operation, Bob 
concatenates qB with a sequence of n/2 Bell states                 that is prepared as 
decoy qubits and subsequently applies the permutation operator       to obtain an 
extended and randomized sequence q′B which he sends to Alice. 
Step 5: After receiving the authenticated acknowledgment of the receipt of the 
entire sequence q′B from Alice, Bob announces the position of the decoy qubits 
(note that he does not disclose the actual order of the message qubits) i.e.,            . 
Alice checks the possibility of eavesdropping by following the same procedure as in 
Step 3. If the error rate is found to be within the tolerable limit, they continue to 
the next step, otherwise they discard the protocol and go back to Step 1. 
Step 6: Alice publicly announces her key KA and Bob uses that and his own key 
(sequence) KB to form the shared key: K = KA ⊕ KB. 
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Step 7: Bob announces the actual order of the message qubits          .                                  
and Alice uses that information to obtain qB. Now she combines pA and qB and 
performs Bell measurements on        .      This would reveal KB as she knows the initial 
state and the encoding scheme used by Bob. 
Step 8: Using KA and KB Alice prepares her copy of the shared key i.e.,  
K = KA ⊕ KB.   
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Security against dishonest Alice:  
Delay measurement technique 

To communicate KB if Alice and Bob use a standard protocol of DSQC or QSDC (say 
they use PP protocol), then it would be possible for Alice to know Bob’s secret key 
before she announces KA. In that case she will be able to completely control the 
shared key by manipulating KA as per her wish. To circumvent this attack we have 
modified the protocol in such a way that Bob does not announce the coordinates of 
the message qubits sent by him till he receives KA. This strategy introduces a delay in 
measurement of Alice and this delayed measurement strategy ensures that Alice 
cannot control the key by knowing KB prior to her announcement of KA. 
 

Security against dishonest Bob 
Alice announces her key only after receiving the message qubits (without their 
actual order) from Bob. This ensures that Bob cannot control the key by knowing 
Alice’s key. Only thing that Bob can do after knowing KA is to change/modify the 
coordinates of q′B, but any modification in that would lead to entanglement 
swapping in our case and that would lead to probabilistic outcomes without any 
control of Bob.  



Turning a protocol of QSDC/DSQC to a protocol 
of QKA 

 
Eavesdropping can be avoided in all protocols of DSQC and QSDC and by 
randomizing the sequence of key encoded bits sent by Bob (i.e., by delaying the 
measurement to be performed by Alice) we can circumvent the attacks of dishonest 
Alice.  
It is not sufficient to build a protocol of QKA. We also need to avoid the attacks of 
dishonest Bob.  
=>We need to restrict the information available to Bob. Specifically, Bob must not 
have complete information of the basis that is used to prepare the qubits on which he 
has encoded his key. In the previous Protocol and in all orthogonal-state-based two-
way DSQC/QSDC protocols this can be achieved if Alice keeps some of the qubits of 
each entangled state with her as that would restrict Bob from changing KB after 
receiving KA. The same can be achieved in a non-orthogonal-state-based protocol by 
using more than one MUBs. If Alice prepares the state randomly using one of the 
basis sets and don’t disclose the basis set used by her till Bob discloses the sequence 
then Bob will not have complete access of the basis set used for preparation of the 
message qubits. As a consequence he will not be able to control the key.  



Alice encodes nothing (i.e., she always choose UA = Im ) and keeps (n − m) qubits 
with herself and sends the remaining m-qubits to Bob who encodes his key by 
applying an m-qubit unitary operation UB and sends that back to Alice, but only 
after changing the order so that Alice cannot measure the final state immediately. 
Alice announces her key after receiving the key encoded qubits from Bob as in 
Protocol 1 and subsequently Bob announces the sequence of the message qubits 
sent by him. In QKA Alice does not need to disclose her measurement outcome. 
This modified QD protocol is equivalent to our protocol of QKA.  
This clearly shows that all protocols of QD with n > m would lead to protocols of 
QKA.  

Turning protocols of QD to protocols of 
QKA 



A multi-party protocol of QKA 
 In analogy to the previous protocol Alice, Bob and Charlie produce their secret 

keys: 
 
 
where                    denote ith bit of key of Alice, Bob and Charlie respectively and i = 
1, 2,... , n. We describe a protocol of multi-party QKA in the following steps. 
Step 1: Alice, Bob and Charlie separately prepare                                       
respectively. As in Step 1 of the previous protocol Alice prepares two ordered 
sequences pA and qA i.e.,                                                                     
composed of all the first and the second qubits of the Bell states that she has 
prepared. Similarly, Bob and Charlie prepare 
                                                                                                              ,                       from        
                       , respectively. 
Step 2: Each of Alice, Bob and Charlie separately prepares sequence of n/2 Bell 
states               with j ∈ {A, B, C} as decoy qubits and concatenates the sequence 
with qj to form extended sequences q′j. Subsequently user j applies permutation 
operator             on q′j to create a new sequence                       and sends that to 
user j+1. Here we follow a notation in which j ∈ {A, B, C} and A, B,C follows a 
modulo 3 algebra that gives us the relations: A + 3 = B + 2 = C + 1 = A, A = C + 1, B = 
A + 1, C = B + 1 and so on. 
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Step 3: After receiving the authentic acknowledgment of receipt from the receiver 
(user j+1) corresponding sender (user j) announces the coordinates of the qubits 
             sent by him/her. Each receiver computes error rate as in Step 3 of the 
previous protocol. If the computed error rates are found to be within the tolerable 
limit, they continue to the next step, otherwise they discard the protocol and go 
back to Step 1. 
Step 4: After discarding the decoy qubits each user j encodes his/her secret bits by 
applying the unitary operation on each qubit of the sequence received by him (i.e., 
on qj−1) in accordance with his/her key Kj. The encoding scheme is as follows: If Ki 

j = 
0 (1) then user j applies I (X) on qi

j −1. As a result of encoding operations, user j 
obtains a new sequence rj . After the encoding operation user j concatenates rj with 
a sequence of n/2 Bell states           that is prepared as decoy qubits and 
subsequently applies the permutation operator       to obtain an extended and 
randomized sequence r′j which he/she sends to the user j+1. 
Step 5: After receiving the authentic acknowledgment of the receipt of the 
sequence r′j from the receiver j+1, the sender j announces the coordinates of the 
decoy qubits i.e.,                 .      User j+1 uses the information for computing the error 
rate as before and if it is below the threshold value then they go on to the next step, 
otherwise they discard the communication. In absence of eavesdropping user j 
announces the coordinates of the message qubits i.e.,                       
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Step 6: Same as Step 4 with only difference that if Ki j = 0 and Ki j = 1 then user j 
applies I and Z respectively on ri

j −1. As a result of encoding operations user j obtains 
a new sequence sj and after insertion of decoy qubits and applying permutation 
operator he/she obtains a randomized sequence s′j which he/she sends to the user 
j+1. 
Step 7: Same as Step 5. 
Step 8: After discarding the decoy qubits each user rearranges the sequence 
received by him/her. Now each user j has two ordered sequences pj and sj−1. Each of 
the users j performs Bell measurements on         .   According to the output of the 
Bell measurement and Table 1 each user j can obtain the secret keys of the other 
two parties. Hence the shared secret key K = KA ⊕ KB ⊕ KC can be generated. 
 
 
 
 
 
 
 
Thus A + 2 = C = A − 1 and so on. Further, to denote the Bell states, we have used the 
following conventions: 
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Table1: Transformation 
of        based on two 
operations. Here + refers 
to modulo 3 operations. j 
∈ {A, B, C} where A, B, C 
stands for Alice, Bob and 
Charlie, respectively.  
 



Here we note that {I, X, iY, Z} is a modified Pauli group under multiplication and {I, 
X}, {I, Z} are its disjoint subgroups. Here disjoint subgroups refer to two subgroups 
gi and gj of a group G that satisfy gi ∩ gj = {I}, where I is the identity element. Thus 
except identity element gi and gj do not contain any other common element. Now 
we assume that G is a group of order M under multiplication and elements of G are 
x-qubit unitary operators. Further, we assume that there exist n mutually disjoint 
subgroups gi with i = 1,...,n of the group G such that gi’s are of equal size (say each 
of the gi’s has 2y elements) and     i⊗m gi = g1 ⊗ g2 ⊗ g3 ⊗......⊗ gm = U1,U2,.....U(2y)

m 
where (2y)m ≤ M; Ui ∈ G and Ui    Ul ∀ i, l ∈ {1, 2, ・ ・ ・ , (2y)m} . Now if we have 
I⊗(N−x)Ui                       and                             where       is an N-qubit quantum state 
with N > x, then we can have an (m + 1)-party version of protocol  of QKA.  

Disjoint Subgroups 
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General study of HQIS 
using different classes of  
n-qubit entangled states 

HQSS Probabilistic HQIS  

Modifying HQIS 

32 



Generalization of HQIS  

4-qubits are required for HQIS and  we restrict ourselves to n = 3 

General (n+1) qubit state of our interest: 
 
where        and        are arbitrary n qubit state and are orthogonal to each other. The first qubit of           
          is with Alice and rest are with n agents.  
Alice wishes to teleport (share) among her agents a general one qubit state, 
 
 
which represents an arbitrary qubit. So the combined state is 
 
 
 
 
 
 
 
If Alice does Bell measurement on the first 2 qubits the states of all the n agents reduces to 
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Alice wishes to share (teleport) an arbitrary qubit among her agents for which she uses a (n+1) qubit state. The first qubit of (n+1) qubit state is always with Alice and the rest qubits are with her n agents where each agent has 1 qubit.



Outcome of Alice's 
measurement    

Combined state of all agents after 
measurement of Alice 

 
 

 
 

 
 

 
 

                                                            Table 2  
Relation between outcomes of Bell measurement performed by Alice and the 
combined state of the agents, which is true in general. This provides us the 
framework to investigate the possibilities of HQIS in different quantum 
states. 
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Examples of 4-qubit states 
  
Case I:          is 4-qubit Omega state         : 
Alice has chosen 4-qubit       state as channel and kept the first qubit with her and has sent the 
second, third and fourth qubits to Bob, Charlie and Diana respectively.  
 
In that case 
 
 
where                                           and 
 
Now after Alice's Bell measurement on the first two qubits, the combined state of Bob, Charlie 
and Diana collapses according to Table 1. If Alice's measurement outcome is         then the 
state of the agents is 
 
 
 
Similarly, if Alice obtains         then the state of the agents is 
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Now if the agents decide that Diana will reconstruct the secrets, then we can decompose 
(4) and (5) as 
 
 
 
Now from (6) and (7) it is clear that if Bob and Charlie measure their qubits in computational 
basis and only one of them sends the result to Diana then Diana will be able to reconstruct the 
state sent by Alice using appropriate unitary operators as shown in Table 3. 
The more information is known, less collaboration is needed. 
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measurement 
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Joint measurement 
outcome of Bob and 

Charlie 

Diana's 
operation 
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XZ 
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X 

Table 3 
Relation among the 
measurement outcomes of 
Alice, Bob and Charlie and 
the unitary operations to be 
applied by Diana when the 
initial state is an omega   state 
and Diana reconstructs the 
unknown state. Here the 
measurement outcomes of 
Bob and Charlie are always 
same. So the communication 
from one of them and Alice 
would be sufficient for Diana 
to reconstruct the unknown 
state sent by Alice. 
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For example, if Alice's outcome is |psi^+> and that of Charlie is  |0> then the state of Diana is collapsed to     (1/Sqrt (1+|L|^2)) ( |0>+L|1>) so Diana needs to apply I. So Diana needs help of Alice and either Charlie or Bob to reconstruct the unknown state sent by Alice. 



If Bob reconstructs the state sent by Alice. 
We can decompose (4) and (5) as:  
 
 
 
 
 
The state with Bob in (8) can be considered as quantum encrypted with classical data 
of 2 bits in the joint possession of Charlie and Diana, which is seen manifestly as 
follows:  
 
 
 
Without access to knowledge of the state with Charlie and Diana, Bob's state is given 
by the reduced density operator: 
  
                                                                
implying that Bob gains no information without the cooperation of Charlie and 
Diana. Analogous observations hold for the state           in  (8) and states          in (9). 
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If  Alice inserts some decoy qubits and applies PoP before sending a sequence of qubits 
to a user, they will be able to circumvent eavesdropping and the protocol of HQIS will 

become a protocol of HQSS. 



Alice 
measurement 

outcome 
 

Joint measurement 
outcome of Charlie 

and Diana 

Bob’s 
operation 

 

Z    (I) 

   X   (XZ) 

  I    (Z) 

  XZ  (X) 

  I    (Z) 

   XZ  (X) 

  Z    (I) 

   X   (XZ) 

Table 4 
Relation among the 
measurement outcomes of 
Alice, Charlie and Diana 
and the unitary operations 
to be applied by Bob when 
the initial state is an omega       
state and Bob reconstructs 
the unknown state. Here 
Charlie and Diana need to 
do a joint measurement and 
consequently Bob requires 
assistance of both of them 
and Alice to reconstruct the 
unknown state sent by 
Alice. 
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Bob can recover the arbitrary state        if Charlie and Diana make a joint 
measurement (a nonlocal operation) by applying the appropriate unitary operators 
shown in Table 4, this requires assistance of  Charlie, Diana and Alice. 
Thus, Bob requires more information than required by Diana (more powerful than 
Bob) to reconstruct. Hence Bob (Charlie) and Diana have different powers to 
recover the arbitrary state. This makes the scheme hierarchical. 

〉Sψ|



Case II:          is 4-qubit cluster state          : 
If Alice has chosen 4-qubit cluster state          as channel  
 
 
 
 
 
Now after Alice's Bell measurement the combined state of the agents collapse according 
to (12) and (13); 
 
 
 
 
 
 
 
 
Cleary from (4), (5), (12) and (13) we can easily observe the following symmetry: 
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Thus after the measurement of Alice the combined states of the agents in this case  
[i.e., when                 ] is equivalent to that in the previous case [i.e., when                ].       
The only difference is that the role of Diana and Bob are now reversed. Consequently, we 
obtain a HQIS scheme with                        However, here Bob is more powerful than Charlie 
and Diana.  
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HQSS=HQIS+QKD 
Hierarchical quantum state sharing (HQSS): 
Suppose, Alice is boss of a company and Bob, Charlie and Diana are her agents. Alice trusts 
Diana more than the other two agents as he is the oldest employ. Thus there is a hierarchy 
among the agents. In this situation, Alice may use HQIS scheme with 4-qubit       as 
described in case-I and send the information in three pieces so that none of Bob, Charlie 
and Diana can read the message of Alice without the help of the other. However, Diana would 
require lesser help than Bob.  
Possibilities of eavesdropping. For example, consider that Bob is dishonest and he captures 
the qubit sent to Charlie and Diana, too. If Bob does a Bell measurement on Charlie's and 
Diana's qubit then using the unitary operations described in Table 3, he will be able to get the 
entire information without any help of Charlie and Diana. So Alice needs to add some error 
checking schemes for security purpose to the above proposed HQIS scheme.  
  
Security 
If Alice adopts the insertion of decoy qubits and rearrangement of the order of 
particles technique then HQIS will become HQSS. 
There may be many kind of attacks. An external Eve may attack the protocol or a dishonest 
party (say Bob, Charlie or Diana) may capture the qubits of the others and obtain the entire 
information without the help of others. Such attacks are prevented by above strategy adopted 
by Alice. If the eavesdropping is finally checked by the BB84 subroutine, security of the 
protocol would be equivalent to that of BB84 protocol. 
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Communication, CRC Press, May, 2013.  All the cartoons are from the book. 
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